以青春之姿奔赴赶考之路******
迈步新征程,青年干部心中要满怀家国之情,行动当凝聚奋斗之力,以拼搏进取的品格、昂扬奋进的豪情逐梦而行,在实干苦拼中扛起事业担子,书写不负时代、不负韶华的崭新时代答卷。
凝聚起能吃苦、肯奋斗的“信仰之力”,以“忠诚之姿”奔赴赶考之路。坚定的信念凝聚着拼搏之力,执着的追求激发着奋进之能。作为青年干部,要把对党和人民的忠诚转化为脚踏实地的行动,矢志不渝、从一而终,在逐梦之路上以“信仰之灯”为领航。无论是坚守信仰、视死如归的陈延年还是以胸膛挡枪眼的黄继光,无论是张开双臂捍卫脚下热土的陈红军还是在绝壁上开凿天渠的黄大发,他们秉持至深的家国之情,将个人奋斗与国家的发展建设紧密相连,用行动为我们矗立起精神之丰碑。新的征程上,青年干部要以“信仰灯塔”照亮奋进之路,胸怀党和人民的伟大事业,凝聚起攻坚克难的先锋之力,在赶考之路上敢闯敢干、善作善成,以“忠诚答卷”回应时代召唤。
凝聚起不怕难、向前冲的“斗争之力”,以“奋进之姿”奔赴赶考之路。青年干部要有“无惧远征”的决心,要有“虽远必达”的决心,在赶考之路上激扬豪情、凝聚斗志,以“越是艰险越向前”的坚韧不拔投身热血征程。征途漫漫,惟有奋斗。青年干部要朝着目标努力奋斗,增强斗争的信心和底气,投身时代洪流、奏响奋斗节拍,勇于涉险滩、爬陡坡,以昂扬奋进之姿攻坚克难,在困难面前能够奋起反击,在逆境之中能够勇毅而行,以不懈奋斗赢取远征路上的胜利,在斗争中打开崭新天地,以功在不舍、全力以赴的实干精神积小胜为大胜,为事业的发展和进步注入强劲动能。
凝聚起情怀深、行笃定的“初心之力”,以“奉献之姿”奔赴赶考之路。“悠悠万事,民生为大。”青年干部要把为民造福作为工作的出发点,沿着初心的“原点”画好为民奋斗的“延长线”,坚守人民立场、厚植为民情怀,把群众的美好向往作为奋斗目标,把群众的所思所盼作为心之所系,让“为民答卷”熔铸情怀、充满温度。青年干部要时刻牢记为民使命,多聆听群众的声音,多了解群众的实际需要,将群众的一件件实事办好,坚持躬身向下、脚步向下,多到田间地头、村头村尾了解群众的想法,做到察民情、知民意,找准工作的具体抓手,不断提升为民服务的实际成效。(李俊成)
绕过人墙、半路转弯 怎么在世界杯踢出超帅“香蕉球”?******
又到了四年一度的世界杯
不知道大家是否还记得
2018届世界杯中
葡萄牙和西班牙相遇的小组赛
C罗在最后时刻力挽狂澜
踢出被解说员叹为
“翩若惊鸿,宛若蛟龙”的
“C型”任意球,扳平比分
被踢出的球为什么会迅速升降?
又为什么会“拐弯”呢?
首先我们来了解一下任意球
任意球是啥?
任意球是罚球的一种。它是一种在足球(或手球)比赛中发生犯规后重新开始比赛的方法。
任意球分两种:直接任意球,踢球队员可将球直接射入犯规队球门得分;间接任意球,踢球队员不得直接射门得分,球在进入球门前必须被其他队员踢或触及。判罚前场任意球后会使用一种泡沫喷剂划定球的摆放位置,以及人墙的站位,发任意球时需要用手触球,然后在裁判哨响后踢球。
香蕉球?能吃吗?
事实上,C罗踢出的这种任意球在足球比赛中并不少见。
在1997年,在巴西对法国的一场足球比赛中,巴西足球运动员Roberto Carlos,在没有通向球门的直接路线的情况下,从35米外开出一个任意球。他的射门使球飞过球员,并在快要出界的时候急转向左,砸入球门。
图源:网络 香蕉球图解
球的突然拐弯让在场球员,特别是法国守门员根本来不及反应。这个史上最漂亮,最具标志性和最违反物理学定律的任意球,被叫作“香蕉球”。法国物理学家对此研究了数年,终于用“马格努斯效应”解释了这个问题。
马格努斯效应
图源网络
当一个旋转物体的旋转角速度矢量与物体飞行速度矢量不重合时,在与旋转角速度矢量和平动速度矢量组成的平面相垂直的方向上将产生一个横向力。在这个横向力的作用下物体飞行轨迹发生偏转的现象。这是流体力学中的一种现象。
图源:陕西师范大学物信院 马格努斯效应示意图
旋转物体之所以能在横向产生力的作用,是由于物体旋转可以带动周围流体旋转,使得物体一侧的流体速度增加,另一侧流体速度减小。
是不是听得云里雾里?
香蕉球轨迹
球在气流中运动时,如果其旋转的方向与气流同向,则会在球体的一侧产生低压,而球体的另一侧则会产生高压。运动员的用力方向朝右,所以足球逆时针旋转。拐点处足球左侧产生低压,右侧产生高压,这样就导致足球存在横向的压力差,并形成向左侧的力。
图源:NKPhysics
根据物理公式,距离越远,速度越慢,球偏离角度也就越大。因此,我们能看到在香蕉球运行的末尾时刻,会发生更剧烈的偏转,给守门员一个巨大的“惊吓”。
我也能踢出和C罗一样的球吗?
回到文章开头提到的C罗“力挽狂澜”的任意球,这一球不止踢出了上述“香蕉球”的概念,同时也混合了“电梯球”,即指大力踢出的足球,下落很快,像是从电梯上下坠,它实际上是高速飞行的足球受到重力和大雷诺数阻力下的运动轨迹。
图源: 中国物理学会期刊网 皮尔洛的“电梯球”
葛惟昆教授解释说:“踢出电梯球的一大关键要素,就是球的初始速度要快。”要踢电梯球,球的初始速度应该接近150公里/小时,没错,就是一辆车在高速公路上狂飙的速度。
图源:科学世界
研究人员在进行场景模拟时发现,要想让100公里/小时以上速度的任意球避开人墙(假定在距离约9米远的位置有5名身高1.8米的对方球员并排)成功射门,球离开地面时与地面的夹角必须控制在15°~17°之间,也就是仅有2°的精度范围(在距离球门25米的位置,踢出转速为每秒8转的侧旋弧线的情况)。
如果是足球,以每小时90千米的速度每秒旋转8转,球会在这个距离内弯曲3米以上。
图源见水印
而踢出弧线的关键在于,落脚点在偏离球心的位置,偏离球心的幅度越大,球的转速越快。有研究人员称,安德烈亚皮尔洛等优秀的任意球球员会使球的旋转轴倾斜角度大于侧旋,让马格努斯力倾斜向下发挥作用,从而踢出“球速快、大幅弯曲的同时又急剧下沉的”球路。
资料来源:科学世界、中国物理学会期刊、科技日报、天津科普说、NKPhysics
整理:董小娴
(文图:赵筱尘 巫邓炎)